Aller au contenu

Archivé

Ce sujet est désormais archivé et ne peut plus recevoir de nouvelles réponses.

Bob

Que veux dire graine type f1 ?

Messages recommandés

Bob    47
Bob

Graine type F1.

Que signifie F1, F2 et "pure souche"?

Une pure souche est une variété génétiquement homogène dont les graines sont uniformes.

Un hybride est une variété issue de deux parents génétiquement différents, pure souche ou hybride.

Quand vous croisez ensemble deux pures souches ensemble pour la première fois, vous obtenez la génération F1. Quand vous croisez deux F1 de la même génération, vous obtenez la génération F2.

Ce processus doit continuer au moins jusqu'à la génération F4 pour stabiliser les traits récurrents.

Quand on croise 2 variétés pures différentes, on crée un croisement de type f1.

Un croisement f1 a les qualités des variétés pures, mais en mieux (selon les critères recherchés)

Le "constructeur" (dit breeder) se donne un cahier des charges avec des paramètre à prendre en compte. Tous les points sont vérifiés un par un, et s'il y'a un défaut, le plant est rejeté .Et il y a bien une trentaine de facteurs minimum à prendre en compte !

Exemples de différents facteurs pris en compte:

Caractéristiques générales, Caractéristiques de la fleur, Taille et rendement, Forme, Vigueur, Couleur, Résistance aux insectes nuisibles et aux maladies Niveaux de cannabinoïdes (ex : contenu en THC), Maturation, Goût et arôme, Production de racine, Quantité et qualité de résine, Ramification, Taux de séchage, Sexe, Facilité de la taille, Maturation etc.

Le breeder digne de ce nom prend entre 400 et 3000 graines pour choisir un seul plant femelle ou male par variété !!! (Imaginez l’espace, et le cout de l'installation !)

Une fois que tous ses critères son bons, il peut croiser les espèces. Viens ensuite la vérification de la stabilité.

Tout breeder qui se respecte, vérifie une fois son croisement effectué, que son nouveau né à bien les caractéristiques voulues et la il prend un lot de graines, et vois si ça correspond bien. Si les variétés ont bien été choisies, les f1 auront à peu prés les même caractéristiques (à quelques surprises rares de la nature)

Le croisement est avant tout un vrai métier car il faut de nombreuses connaissances, recherches et beaucoup de matériel.

Ensuite seulement la commercialisation prend effet !!

Plusieurs breeder reconnus :

-sensi seeds

-soma seeds

-serious seeds

-dutch passion

-greenhouse seed

-Mr.Nice

croissement entre variété F1 :

Le croisement de variétés hybrides F1 produit des plantes dont les caractéristiques ne seront pas identiques à celles des parents d’origine génétiquement purs même si certaines d'entre elles peuvent être communes.

La qualité de la plante diminue car la variation du patrimoine génétique est étendue et ainsi il est plus difficile de prévoir les caractéristiques du résultat final.

Ce processus est sans fin : les hybrides peuvent à leur tour être croisés avec d’autres pour créer des hybrides qui perdront à leur tour en qualité.

Donc, comprenez que certains vendeurs croisent des variétés qui ne sont pas pures et qu'ils n'ont pas beaucoup de critères de croisement par rapport aux autres !

D'où parfois des prix très attractifs mais des variétés pas stables et qualités en baisse !

Partager ce message


Lien à poster
Partager sur d’autres sites
Invité Timat   
Invité Timat

Salut Bob merci pour ton post il et super bien je connaisser un peux j'avai apri ca en cour mes pas avec les cannabinoïde lool a bientot :arrow:

Partager ce message


Lien à poster
Partager sur d’autres sites
samsam    10
samsam

salut :arrow:

merci pour se poste j'ai toujours voulu savoir se que

sa voulais dire mai j'ai jamais poser la question :bye:

samsam

Partager ce message


Lien à poster
Partager sur d’autres sites
Guest   
Guest

SLT,

Modeste participation sur le F1...

- reproduire sa femelle spéciale?

Dans cette première situation, partons du fait qu'un hybrideur trouve un individu spécial.

Il est naturel d'être curieux et de chercher à croiser deux plantes que vous appréciez. De les faire pousser et de trouver une nouvelle variété que vous aimez encore plus. On peut préserver cette nouvelle variété en la clonant indéfiniment, mais les accidents arrivent et les clones meurent. Ils peuvent par exemple attraper des virus. De plus, il est plus difficile de partager des clones par courrier que des graines. Il est donc naturel de chercher à obtenir des graines à partir de cette plante.

Mais avant de commencer à produire ces graines, il convient de savoir exactement ce qu'on cherche à obtenir d'elles. Veut-on simplement qu'elle puisse reproduire des individus comme la plante spéciale? Un rétro-croisement simple (backcrossing) le permettra. Ou veut-on qu'elles puissent produire plus de graines comme la plante spéciale, une vraie variété? Cela est en fait très différent. Voyez-vous, il y a de grandes chances que votre plante spéciale soit hétérozygote pour bien des traits qu'elle exprime dans son phénotype. Cela signifie juste qu'elle contient les informations génétiques (les gènes) de deux traits opposés, mais que vous ne pouvez en voir qu'un, le dominant. Toutefois, ses graines n'auront que l'un ou l'autre de ces gènes, sa progéniture exprimera donc toute l'information génétique qu'elle a, incluant ce que vous ne pouviez pas voir auparavant. Si vous voulez créer une vraie nouvelle variété, vous devez conserver tous les gènes que vous pouvez voir, et éliminer tous ceux que vous ne voyez pas, mais qui peuvent s'exprimer sur la progéniture. Créer des homozygotes. La seule façon d'arriver à cela est la sélection et le croisement inter-génération (sélectionner les enfants homozygotes pour être parents de la génération suivante).

Rétro-croisement et cubage

Le rétro-croisement consiste à croiser un individu (votre plante spéciale) avec sa progéniture. Malsain dans notre monde, mais les plantes semblent aimer cela.

1) Le premier rétro-croisement est simplement un rétro-croisement.

2) Le deuxième rétro-croisement, obtenu en croisant le premier rétro-croisement avec son parent (qui devient donc grand-parent) et souvent appelé SQUARING* par les breeders.

3) Votre troisième rétro-croisement, obtenu en croisant le deuxième rétro-croisement avec son grand-parent (qui devient donc arrière-grand-parent) et souvent appelé CUBING* par les hybrideurs. Vous pouvez continuer le rétro-croisement mais cela s'appelle juste rétro-croisement. Le terme cubing est une référence au chiffre 3, parce qu'il y a 3 rétro-croisements.

Le cubing se base sur des probabilités mathématiques, compte tenu des fréquences des gènes. Plus vous utiliserez de mâles dans vos croisements, plus vous aurez de chances que la réalité colle à la théorie. En théorie, avec le premier croisement, 75% du pool génétique obtenu correspondra au pool génétique du parent P1. Le squaring monte cette probabilité à 87,5% et le cubing a 93,75%. Vous trouvez ces résultats en faisant la moyenne entre les deux parents croisés. Par exemple, vous commencez à croiser la mère P1 (100%) avec un mâle quelconque (0%). 100% + 0% divisé par 2 donne 50%. La progéniture sera donc approximativement 50% identique à la mère. Prenez-là, faites votre premier rétro-croisement, et vous obtiendrez 100% + 50% / 2 = 75%.

Et ainsi de suite. Comme nous le verrons plus tard, vous pouvez appliquer ces mêmes probabilités mathématiques à des traits ou des gènes spécifiques, et cela peut avoir un effet dramatique sur votre méthodologie et vos méthodes de sélection.

Votre sélection de mâles pour chaque rétro-croisement est un point crucial pour réussir avec cette technique. Selon le cas, vous pouvez choisir des mâles qui contiennent les gènes que vous désirez, ou vous pouvez par inadvertance choisir des individus porteurs du gène récessif non-désiré. Ou plus probablement, vous pouvez choisir des individus hétérozygotes pour les deux gènes comme la mère P1 qui a été rétro-croisée. La façon de faire la plus facile est de ne s'intéresser qu'à un seul gène et un seul trait, par exemple supposons que le goût est déterminé par un seul gène (ce qui n'est pas le cas en réalité). Supposons maintenant que parmi notre population qui a un goût de pin nous trouvions un individu spécial qui a un goût d'ananas et que nous voulions le garder. Le gène causant le goût d'ananas peut être dominant ou récessif et les résultats peuvent être différents selon le cas.

a) Le goût d'ananas est dominant

A = goût d'ananas et p = goût de pin

Chaque individu aura deux gènes de goût par paire, les génotypes possibles étant AA, Ap, et pp. Comme A est dominant, AA et ap exprimeront le goût d'ananas alors que pp donnera le goût de pin, ce sont les phénotypes. Comme l'ananas est un nouveau goût, il y a de fortes chances pour que l'individu spécial soit hétérozygote, à savoir Ap. Du coup, la seule combinaison de parent possible est Ap X pp, Ap étant le parent que l'on souhaite cuber.

Le croisement F1:

Il faut maintenant choisir des mâles qui ont un goût d'ananas. Les mâles seront choisis aléatoirement.. Le ratio de A par rapport aux p des mâles F1 sera 2:6 (2 A pour 6 p). On peut aussi dire que la fréquence du gène A est de 25%. Cela signifie que sur quatre grains de pollen, un contiendra le gène du goût d'ananas. Voilà ce qui se passe lors du premier rétro-croisement:

C'est ce premier rétro-croisement qui le premier crée un individu homozygote (AA) pour le goût ananas. Cependant, à cause de nos moyens de sélection limités, nous choisissons les mâles au hasard. De chaque mâle nous pouvons espérer que trois grains de pollen sur huit contiennent le gène du goût d'ananas. La femelle P1 continue de donner un A pour un p. Je vais épargner la mémoire de votre ordinateur en ne mettant pas le tableau, mais n'hésitez pas à le faire sur papier pour être sûr d'avoir bien compris ce qu'il se passe.

Le second backcross (Squaring) donnera ceci:

3AA 8Ap 5pp

68,75% auront donc le goût d'ananas et 31,25% le goût de pin. La fréquence du gène A est passé à 7/16 soit 43,75%.

Et finalement, le troisième backcross (le Cubing) donne:

7AA 16Ap 9pp

71,875% ont le goût d'ananas après le cubing. Environ 22% (7 / 32 X 100) de la progéniture est homozygote sur le goût d'ananas. La fréquence du gène A atteint environ 47% (30/64).

En conclusion, si le rétro-croisement continue indéfiniment avec une sélection aléatoire des mâles sur une population suffisamment grande, la fréquence du gène A atteindra au maximum 50%. Cela signifie que le mieux que nous puissions espérer est 25% de pure souche de goût d'ananas et en tout 75% de plantes qui auront le goût d'ananas. Vous ne vous débarrasserez pas des 25% au goût de pin.

:bye: Le goût d'ananas est récessif

Dans ce cas, P est le goût de pin et a est le goût d'ananas. La convention est que les lettres majuscules représentent la dominance. La plante sur laquelle on a trouvé le goût d'ananas est forcément homozygote (aa). Le mâle peut être Pa ou PP, mais plus probablement PP. De toutes façons, cela ne fait pas une grande différence sur les résultats.

Le croisement F1 est plutôt basique, nous nous passerons donc du diagramme. Nous croisons simplement une femelle (aa) avec un mâle (PP) et nous obtenons des individus qui sont tous Pa. Comme le goût d'ananas est récessif, aucun individu de la génération F1 n'aura le goût d'ananas. La fréquence du gène a est cependant de 50%.

aa X PP = Pa + Pa + Pa + Pa

Comme tous les individus F1 sont identiques (Pa), le pollen qu'ils donnent pour le premier rétro-croisement contiendra un gène a pour chaque gène P. Le premier backcross donnera:

B1 = aa X Pa = Pa + Pa + aa + aa

Comme vous pouvez le voir, 50% de la progéniture a le goût d'ananas et la fréquence du gène a est de 6/8 soit 75%. La génération B1 donne du pollen contenant 6 gènes a pour 2 gènes P.

Comme vous pouvez le voir le deuxième rétro-croisement (squaring) donne le goût d'ananas à 75% de la progéniture. La fréquence du gène a est environ 88%. Sur les grains de pollen, 14 sur 16 porteront le gène a. Quand on les rétro-croise avec la mère P1, on obtient cela:

88% environ ont maintenant le goût d'ananas, et toutes sont homozygotes pour ce trait. La fréquence du gène désiré est à peu près de 94%. Si le rétro-croisement continue indéfiniment, la fréquence du gène tendra vers 100%, sans toutefois jamais les atteindre.

Il faut noter que les exemples ci-dessus supposent que l'on n'applique aucun critère de sélection ainsi qu'une population suffisamment vaste pour assurer un choix aléatoire des mâles. Plus il y a de mâles, meilleure est la sélection, qu'on la veuille aléatoire ou non. L'importance de la taille de la population et des critères de sélection est encore plus grande quand les gènes que l'on souhaite reproduire sont hétérozygotes. Et surtout, nous n'avons pris pour ces exemples qu'une seule paire de gènes.

En réalité, la plupart des traits recherchés comme la puissance sont influencés par plusieurs traits. Les mathématiques deviennent alors plus compliquées pour trouver le taux de succès d'un projet de cubing. En gros, vous devez multiplier les probabilités d'obtenir un trait par les probabilités d'en obtenir un autre. Par exemple, si le trait du goût d'ananas était influencé par deux gènes récessifs différents, vous devriez alors multiplier 87,5% par 87,5% (0,875X0,875X100) ce qui donne 76,6%. Cela signifie que 76,6% de la progéniture aura le goût d'ananas. Supposons maintenant que le trait du goût d'ananas est influencé par 2 gènes récessifs et un gène hétérozygote dominant. Il faut multiplier 87,5% par 87,5% puis par 71,9% (0,875 X 0,875 X 0,719 X 100) ce qui donne 55%. En passant juste à trois gènes, le nombre d'individus après le cubing ayant le goût d'ananas tombe à 55%. Le cubing est donc une bonne technique quand vous souhaitez augmenter la fréquence de quelques gènes (il est important de s'en souvenir), mais plus le projet grossit, plus les chances de succès sont faibles… du moins tant qu'on n'applique aucun critère de sélection.

Appliquer des critères de sélection

Le meilleur moyen d'augmenter significativement vos chances de réussite est d'appliquer des critères de sélection. Essayez de trouver une façon efficace et précise d'isoler les mâles qui ont les traits désirés et de rejeter ceux qui possèdent des traits non-souhaités. Trouver des moyens d'être sûr que vos mâles transmettent les traits désirés et écartez ceux qui ne le font pas. TOUS les traits doivent être pris en compte. Certains sont directement observables sur les mâles. D'autres, comme le temps de floraison, non. Si vous cherchez un trait que vous ne pouvez pas voir directement, vous devez effectuer des tests de progéniture pour déterminer quels mâles transmettent le plus de gènes désirés. Un test de progéniture consiste à mettre en croissance certains individus de la progéniture pour déterminer le génotype parental.

Il est important quand vous choisissez vos meilleurs mâles d'ignorer les traits superficiels qui n'ont rien à voir avec les traits que vous cherchez réellement. En effet, le cannabis possède plusieurs milliers de gènes sur seulement 10 paires de chromosomes (ou 20 chromosomes individuels). C'est-à-dire que chaque chromosome comporte plusieurs centaines de gènes. Tous les gènes se trouvant sur le même chromosome sont liés entre eux. En gros, ils voyagent en groupe. Quand vous en choisissez un, vous prenez en fait tous ceux sur le chromosome. Il y a une exception à cette règle qui consiste à casser les liens entre les gènes par croisement, mais au nom de la simplicité, nous n'en parlerons pas. Revenons donc à la sélection. Vous pourriez choisir un mâle selon un trait que vous aimez bien comme la forme des feuilles en étoile alors que ce que vous cherchez réellement est le goût de pamplemousse. Mais il se peut que les deux traits se trouvent sur la même paire de chromosomes, mais sur les chromosomes opposés. Si cela arrive, aussi longtemps que vous choisirez des plantes aux feuilles en étoile, vous n'obtiendrez jamais le goût de pamplemousse que vous désirez réellement. Il est bien de garder à l'esprit qu'à chaque fois que vous sélectionnez selon un trait, vous en écartez plusieurs centaines. C'est pourquoi les hybrideurs les plus sérieux apprennent à avancer petit à petit en ne travaillant que sur un trait ou deux à la fois.

Maintenant voyons comment nous pouvons améliorer notre premier exemple de cubing d'un trait hétérozygote dominant en appliquant des critères de sélection. Supposons qu'à chaque génération nous sommes capables de retirer les individus homozygotes sur le goût de pin (pp), mais pas les hétérozygotes (Ap). Si vous vous souvenez, notre mère P1 a le génotype Ap et les combinaisons possibles pour la génération F1 sont Ap + Ap + pp + pp. Nous retirons les deux pp, ce qui ne laisse que les Ap. Notre premier rétro-croisement donnera:

Ap X Ap = AA + Ap + Ap + pp

Encore une fois nous enlevons les pp ce qui nous laisse avec AA + 2Ap. Nous attaquons le deuxième rétro-croisement en ayant passé la fréquence du gène A de 37,5% à 66,7%, 4 grains de pollen sur 6 portent le gène A.

comme vous pouvez le voir, après avoir éliminer les individus homozygotes récessifs après deux rétro-croisements, la fréquence du gène A est passé de 44% à 58%. Si nous continuons, la fréquence monte à 70% (14/20) avant le troisième rétro-croisement, c'est-à-dire que 7 grains de pollen sur 10 seront porteurs du gène A. Encore une fois, j'épargnerais la mémoire de votre PC en me contentant de vous donner les résultats du troisième rétro-croisement:

B3 = 7AA + 10Ap + 3pp

95% de la progéniture a maintenant le goût d'ananas comparé aux 72% sans appliquer de sélection. La fréquence des individus pure souche goût d'ananas monte à 35%. Mais plus important, la fréquence du gène A atteint 60%. C'est un point important au moment des tests de progénitures.

Récapitulons maintenant les pourcentages d'individus pure souche goût d'ananas obtenus dans chacun de nos modèles. Dans le cas où le goût d'ananas serait un trait dominant hétérozygote et qu'aucun critère de sélection n'est appliqué, le cubing produit 22% d'individus pur souche. En éliminant les individus homozygotes récessifs pour le goût de pin, on monte à 35%. Et enfin, quand on cube un gène récessif homozygote, on atteint après le cubing 87,5% d'individus au goût d'ananas pure souche. Et comme je l'ai déjà dit, ces nombres ne sont valables que pour un seul gène. Supposons que le goût d'ananas soit codé par deux gènes différents, un dominant et un récessif, et que vous soyez capable d'éliminer les individus pp et de ne sélectionner que les individus porteurs du gène dominant du goût d'ananas. Votre population après cubing contiendra 87,5% X 35% (0,875 X 0,35 X 100) = 30% d'individus pur souche. Comme vous pouvez le voir, tant que la source est hétérozygote, peu importe le nombre de rétro-croisements que vous effectuez, vous n'obtiendrez jamais une variété pure souche (stabilisée).

Si les tableaux PHOTOS passent pas, je les mettrai VIA Shack ce WE...

Déja envisager d'aller jusqu'au F4 (comme n'importe quel croisement génétique) est une priorité !

S'arretter au F1 n'est pas la panacée... C dommage.....Autant piocher DIRECT chez Nirvana ou Motarebel.

J'ai déja pu hybrider 3 Réfs dont une en F3 et 2 en F5 ... on va retrouver les traits de caractéres choisies par 1 sélection pointue (qui dépend entiérement des ATTENTES du "jardinier"! Les critéres ne seront PAS pareils pour tous...) et par le passage au F4. Parler d'extraordinaires Réf F1 est une uthopie....

Sérious avec sa Bubble en a fait combien ??? 10 ??? 12 ???

Meme B-C-seeds fait du F4 avec la GABERVILLE, ou Sannie's (elite) avec sa KillerQueen F6 . . . pour seulement 40$ !

Les grands breeders sont des grandes marques DEPOSEES et on paye une partie de ce NOM dans le prix...

Comme avec Nike, Chabran, Rolex...& C°. Faire une variété en F4 ou F5 aura peu de chance de vous décevoir si les génétiques s'amalgament entre elles !?!

Bon CROSS a TOUS ! ! !

A+

Partager ce message


Lien à poster
Partager sur d’autres sites
Invité weedy   
Invité weedy

merci et encore bravo a vous pour cet excellent expo sur le croisement et l'obtention de ce que nous souhaiterions !! :bye:

pour ma part vos connaissances me couches... :bye: :bye:

serait il juste de dire qu'un type de plante acquis chez un breeder et dont l'un parents et un croisement issus d'un F1 sera en évolution et qu'en même mode de culture, en apport identique on pourrait avoir des résultats différent? :bye:

Partager ce message


Lien à poster
Partager sur d’autres sites

×